Model structures on pro-categories
نویسندگان
چکیده
منابع مشابه
Model Structures on pro - Categories
We introduce a notion of a ltered model structure and use this notion to produce various model structures on pro-categories. This framework generalizes the examples of [13], [15], and [16]. We give several examples, including a homotopy theory for G-spaces, where G is a pronite group. The class of weak equivalences is an approximation to the class of underlying weak
متن کاملStrict Model Structures for Pro-categories
We show that if C is a proper model category, then the pro-category pro-C has a strict model structure in which the weak equivalences are the levelwise weak equivalences. This is related to a major result of [10]. The strict model structure is the starting point for many homotopy theories of pro-objects such as those described in [5], [17], and [19].
متن کاملSimplicial Structures on Model Categories and Functors
We produce a highly structured way of associating a simplicial category to a model category which improves on work of Dwyer and Kan and answers a question of Hovey. We show that model categories satisfying a certain axiom are Quillen equivalent to simplicial model categories. A simplicial model category provides higher order structure such as composable mapping spaces and homotopy colimits. We ...
متن کاملModel Structures on Commutative Monoids in General Model Categories
We provide conditions on a monoidal model categoryM so that the category of commutative monoids in M inherits a model structure from M in which a map is a weak equivalence or fibration if and only if it is so inM. We then investigate properties of cofibrations of commutative monoids, rectification between E∞-algebras and commutative monoids, the relationship between commutative monoids and mono...
متن کاملModel structures on the category of small double categories
In this paper we obtain several model structures on DblCat, the category of small double categories. Our model structures have three sources. We first transfer across a categorificationnerve adjunction. Secondly, we view double categories as internal categories in Cat and take as our weak equivalences various internal equivalences defined via Grothendieck topologies. Thirdly, DblCat inherits a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Homology, Homotopy and Applications
سال: 2007
ISSN: 1532-0073,1532-0081
DOI: 10.4310/hha.2007.v9.n1.a15